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Abstract

One of the nagging, unresolved questions in fusion theory is concerned with the extent of the edge.

Gyrokinetic particle simulations of toroidal ion temperature gradient (ITG) turbulence spreading

using the Gyrokinetic Toroidal Code (GTC) [Z. Lin et al., Science 281, 1835 (1998)] and its

related dynamical model have been extended to a system with radially varying ion temperature

gradient, in order to study the inward spreading of edge turbulence toward the core plasma. Due

to such spreading, the turbulence intensity in the core region is significantly enhanced over the

value obtained from simulations of the core region only, and the precise boundary of the edge

region is blurred. Even when the core gradient is within the Dimits shift regime (i.e., dominated

by self-generated zonal flows which reduce the transport to a negligible value), a significant level of

turbulence can penetrate to the core due to spreading from the edge. The scaling of the turbulent

front propagation speed is closer to the prediction from a nonlinear diffusion model than from one

based on linear toroidal coupling.

PACS numbers: 52.35.Ra,52.65.Tt,52.25.Fi
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I. INTRODUCTION

Despite significant progress in experiment, theory and computation in recent years, the

predictive capability of turbulence and transport modeling for magnetically confined plas-

mas is generally limited to case-by-case direct numerical simulations. One of the biggest

obstacles to achieving a predictive capability is understanding edge turbulence and, specifi-

cally, the dynamics of edge-core interaction and coupling. This issue is especially crucial to

understanding the formation and extent of the H-mode pedestal. In particular, the location

of the edge-core boundary is both uncertain and dynamic (and usually posited in an ad hoc

manner in transport codes), so that turbulence spreading surely plays a role in defining its

location. Thus, serious challenges remain due to the fact that virtually all models of fluc-

tuation levels and turbulent transport are built on an assumption of local balance of linear

growth with linear damping and nonlinear coupling to dissipation, i.e., the traditional “lo-

cal balance” paradigm of Kadomtsev et al.1 Such models thus necessarily exclude mesoscale

dynamics, which refers to dynamics on scales larger than a mode or integral scale eddy size,

but smaller than the system. In particular, zonal flows, transport barriers, avalanches, heat

and particle pulses are all mesoscale phenomena.2–7 Similarly, the dynamic or fluid nature

of the edge-core boundary interface is intrinsically a mesoscale phenomena. Such mesoscale

phenomena necessarily introduce an element of nonlocal interaction, which is also strongly

suggested by several experiments, but conspicuously absent from the so called predictive

models.

In our previous studies,8,9 we have identified and studied in depth the simplest nontrivial

problem of turbulence spreading, which corresponds to the spatio-temporal propagation of a

patch of turbulence from a region where it is locally excited to a region of weaker excitation,

or even one with local damping. Our published results focusing on the importance of growth

and damping rate profiles in the spatio-temporal evolution of turbulence are in broad, semi-

quantitative agreement with global gyrokinetic simulations of (core) ITG turbulence.9,10 In

particular, it has been demonstrated that turbulence spreading into the linearly stable zone

can cause deviation of the transport scaling from the gyroBohm scaling naively expected

from local characteristics of turbulence. From these observations, it seems likely that turbu-

lence spreading plays a crucial role in determining turbulence and transport profiles in the

core-edge connection region where the gradient increases rapidly as a function of radius. Al-
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ternatively put, since an L-mode edge is very strongly turbulent, and since spatio-temporal

spreading and propagation of turbulence are natural aspects of the dynamics, it is logical to

consider the possibility of backwash or spillover from the edge into the core.

Turbulence propagation and overshoot vitiate the naive picture of turbulent transport

based upon local balance, which is assumed in virtually all modeling codes. Moreover, energy

propagation from the strongly turbulent edge into the core can effectively renormalize the

edge “boundary condition” used in the modelling calculation. This ultimately feeds into

predictions of pedestal extent and into the so-called “edge boundary conditions” used in

modeling codes.

II. GYROKINETIC SIMULATION OF TURBULENCE SPREADING FROM

EDGE

In this paper, a program of numerical experiments is discussed. These aim to elucidate

and study the inward propagation of turbulence from the L-mode edge into the core. This

propagation generates a connection zone between edge and core, which may be construed

as a symptom of the oft referred to but ill-defined “non-locality phenomena”. We focus our

studies on the simple case with an ion temperature gradient which increases rapidly with

increasing r, so as to study the inward spreading of edge turbulence toward the core. We

note that the possibility of edge turbulence influencing core turbulence has been discussed

before.11,12 Our main computational tool is a well benchmarked, massively parallel, full

torus Gyrokinetic Toroidal code (GTC).13 Toroidal geometry is treated rigorously, e.g., the

radial variations of safety factor q, magnetic shear ŝ, and trapped particle fraction are

retained in global simulations. Both linear and nonlinear wave-particle resonances, and

finite Larmor radius effects are included in gyrokinetic particle simulations. The GTC code

employs magnetic coordinates which provide the most general coordinate system for any

magnetic configuration possessing nested surfaces. The global field-aligned mesh provides

a high computational efficiency without any simplification in terms of physics models or

simulation geometry. Unlike quasi-local codes in flux-tube geometry which remove important

radial variations of key equilibrium quantities, such as safety factor, magnetic shear, and

temperature gradient, and use periodic boundary conditions in the radial direction, GTC

does not rely on the ballooning mode formalism which becomes dubious in describing meso-
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scale phenomena including turbulence spreading.

All simulations reported in this paper use representative parameters of tokamak plasmas14

with the following local parameters at r/a = 0.5: R0/Ln = 2.2, q = 1.4, and ŝ ≡
(r/q)(dq/dr) = 0.78, with Te/Ti = 1, and a/R0 = 0.36. Here R0 is the major radius, a

is the minor radius, LT i and Ln are the ion temperature and density gradient scale lengths,

respectively, Ti and Te are the ion and electron temperatures, and q is the safety factor.

Our global simulations use fixed boundary conditions with electrostatic potential δφ = 0

enforced at r < 0.1a and r > 0.9a. Simplified physics models include: a parabolic profile of

q = 0.854 + 2.184(r/a)2. The temperature gradient profile mainly consists of two regions,

a “core region” from r/a = 0.2 to 0.5, and an “edge region” from r/a = 0.5 to 0.8 and

a gradual decrease to much smaller values towards r/a = 0.1 and r/a = 0.9. A circular

cross section, and electrostatic fluctuations with adiabatic electron response, are used in

the simulations discussed in this paper. While this simple ITG turbulence does not apply

directly as an edge turbulence model, it can elucidate dynamics of turbulence spreading.

The ion temperature gradient value in the core is based on our previous studies. In the

first case summarized in Fig. 1, R/LTi = 6.9 in the core, which is above the effective critical

gradient in the presence of zonal flows R/Lcrit = 6.0, while in the second case summarized

in Fig. 2, R/LTi = 5.3 is within the Dimits shift regime.14 We double the value of the ion

temperature gradient at the edge to model the stronger gradient at the tokamak edge. We

have adopted this two step feature for the ion temperature gradient to make comparisons

with our previous core simulations9,15 and with an analytic model16 readily feasible.

Fig. 1 shows the spatio-temporal evolution of the ITG turbulence envelope for the first

case with R/LTi = 6.9 in the core. The simulation was run until t = 300LTi/cs when the

turbulence apparently ceases to spread further. The initial growth in the edge region with

R/LTi = 13.8 and a higher linear growth rate is apparent from Fig. 1(a)–(b). By the time

the edge turbulence saturates at t ∼ 200LTi/cs, turbulence spreading towards the core is

already well in progress. The turbulence spreading can be characterized by nearly ballistic

(∼ t) propagation of the front with a velocity Ux ' 2.6(ρi/R)cs. The time average value

of fluctuation intensity during the last 1/3 of the simulation duration at r = 0.4a (core) is

I ∼ 36.5(ρi/a)2, which is about 60 percent above the value I ∼ 22.0(ρi/a)2 given by the

core-only simulation with a maximum gradient R/LT i = 6.9.9 In this case, the influx of edge

turbulence energy from the edge into the core is comparable to the local growth of core
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turbulence.

Fig. 2 shows the spatio-temporal evolution of the ITG turbulence envelope for the second

case with R/LTi = 5.3 in the core. The simulation was run until t = 500LTi/cs when the

turbulence apparently ceased to spread further. The initial growth in the edge region with

R/LTi = 10.6 and a higher linear growth rate is apparent from Fig. 2(a)–(b). By the time

the edge turbulence saturates at t ∼ 300LTi/cs, turbulence spreading towards the core is

already well under way, though the core region is effectively stable (i.e., within the Dimits

shift regime) due to self-generated zonal flows. Note that at least in this case, the relaxation

process which drives turbulence spreading is strong enough to overcome the stabilizing ef-

fects of the zonal flow shear. The evolving turbulence profile is better characterized by an

exponential decay in space (with a characteristic ‘skin depth’ ∼ 25ρi as we reported before

in the context of core simulations8,9) rather than by the shape of a propagating front. The

time average value of the fluctuation intensity during the last 1/3 of the simulation duration

at r = 0.4a (core) is I ∼ 12.7(ρi/a)2, which translates to an experimentally relevant value

of δn/n0 ∼ 3.6ρi/a. We emphasize that the observed, quasi-stationary fluctuation level in

this region is driven primarily by the inward propagation of fluctuation energy from the

strongly turbulent edge, since the core simulation with a maximum gradient R/LT = 5.3

would have yielded a fluctuation level near zero, in the absence of collisional damping of

the zonal flows.15 We have also performed a GTC nonlinear simulation for R/LTi = 9.0 in

the core and R/LTi = 18.0 in the edge, and for R/LT i = 6.1 in the core and R/LTi = 12.2

in the edge. As shown in Figs. 3 and 4, the results are qualitatively similar to the case in

Fig. 1 with R/LTi = 6.9 in the core. The front propagation velocity was Ux ' 4.2(ρi/R)cs

and Ux ' 2.1(ρi/R)cs for R/LTi = 9.0 and R/LTi = 6.1 in the core, respectively. The

time average value of the fluctuation intensity during the last 1/3 of the simulation dura-

tion at r = 0.4a (core) was I ∼ 65.1(ρi/a)2 and I ∼ 22.9(ρi/a)2, for R/LTi = 9.0 and

R/LTi = 6.1 in the core, respectively. Since the spatio-temporal evolution of the fluctuation

profiles are accompanied by relatively small scale corrugations, we have estimated the “front

propagation velocity” by displaying the snapshots, separated by equal time steps, and by

drawing a straight line, by eye, through the “knees” which are apparent symptomatics of

the propagating front.

In particular, previous related work has demonstrated that the intensity evolution equa-

tion is a modified Fischer-type reaction diffusion equation. Fischer equations are known
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to support front solutions, in which a ‘leading edge’ of one phase advances into the other.

The ‘leading edge’ is a region of decaying exponential, which ultimately joins to a region of

constant order parameter. This connection necessitates the existance of an inflection point

in the solution. The inflection point, in turn, sits at the knee of the profile. Thus, in order

to relate simulation results to the theoretical models discussed here and in previous papers,

it is natural and logical to track the location of the fluctuation intensity front by tracking

the position of the ‘knee’ in the intensity profile. Of course, this is the crudest possible

procedure, and a detailed quantitative fit to the simulation data is necessaary for a more

accurate comparison of theory and simulation.

III. ANALYTIC THEORY OF TURBULENCE SPREADING FROM THE EDGE

Our analytic study of turbulence spreading is based on a model equation for the local

turbulence intensity I(x, t), which includes the effects of local linear growth and damping,

spatially local nonlinear coupling to dissipation and spatial scattering of turbulence energy

induced by nonlinear coupling.8,16,17

∂I

∂t
=

∂

∂x
χ(I)

∂I

∂x
+ γ(x)I − αI1+β. (1)

The terms on the RHS correspond to nonlinear spatial scattering (i.e., typically χ(I) ∼ χ0I
β

where β = 1 for weak turbulence, and β = 1/2 for strong turbulence), linear growth and

damping, and local nonlinear decay, respectively. Here α is a nonlinear coupling coefficient.

Note that α and χ0 could be functions of radius. This equation is the irreducible minimum

of the model. This equation has been derived from a Fokker-Planck type analysis of the

evolution of the turbulence intensity field in space (i.e., assuming a random walk of intensity

with step size equal to the integral scale and time step equal to the correlation time).16 The

walk yields the nonlinear diffusion term, while local evolution is described by the growth

and nonlinear decay terms. In this respect, the model equation is similar to a type of

K − ε model18,19 (or, more accurately, a K-model) for the turbulence intensity field used in

subgrid-scale modeling. Possible extensions of our model include the additional equations

for other fields,20 and contributions to dynamics such as zonal flows which feed back on I.21

In this paper, we work within the framework of a simple, single intensity field model. The

applicability of such a model to the Dimits shift regime is somewhat questionable, as the
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Dimits shift is a regime of modest deviation from marginality and small zonal flow damping,

so that zonal flow effects may be important. In the context of the present one field model,

the stabilizing effect of zonal flow-induced shearing (e.g., in the Dimits shift regime) can

be absorbed into a shift (reduction) in γ(x). A two field model of turbulence spreading

is a major undertaking, which is beyond the scope of this paper. In this section, detailed

comparisons to our analytic theory are made for the cases, above the Dimits shift threshold,

presented in Figs. 1, 3, and 4.

To pursue a study of turbulence spreading based on linear eigenmodes in toroidal geome-

try, one should consider a higher order ballooning mode formalism.22,23 Note that the above

equation manifests the crucial effect of spatial coupling in the nonlinear diffusion term. This

implies that the integrated fluctuation intensity in a region of extent 24x about a point x

(i.e.
∫ x+4x
x−4x I(x′)dx′) can grow, even for negative γ(x), so long as χ(I)∂I/∂x|x+4x

x−4x is suffi-

ciently large. Alternatively, I can decrease, even for positive γ(x), should χ(I)∂I/∂x|x+4x
x−4x be

sufficiently negative. Thus, the profile of fluctuation intensity is crucial to its spatio-temporal

evolution, as illustrated in Fig. 5. This notion can be further quantified by arguing by an

analogy to tearing instability theory.24 Integrating Eq. (1) in radius as described above, we

obtain
∂

∂t

∫ x+∆x

x−∆x
dx′I(x′, t) = ∆

′
(I)I(x, t) +

∫ x+∆x

x−∆x
dx′(γ(x′)I − αI1+β). (2)

Here, ∆
′
(I) ≡ χ0

∂
∂x

Iβ]x+∆x
x−∆x characterizes the net flux of turbulence16 into (out of) [x−∆x, x+

∆x] via a net jump in the slope of fluctuation intensity. We recall that the classical tearing

mode stability parameter 4′
, which characterizes the free energy in the equilibrium current

gradient is defined as a jump in the slope of perturbed flux function across the resistive

layer.24 Eq. (2) clearly indicates that the sign of 4′
plays a crucial role for the growth of

turbulence intensity. As illustrated in our previous work,8 simple relations γ ∼ ∆
′
(I)/∆x

and γprop ∼ Ux/∆x elucidate the physical meaning of ∆
′
(I) as the influx of turbulence

intensity into the radial layer of width 24x. It is also instructive to note that the tearing

mode theory24 predicts γ ∝ η3/54′4/5, and the resistive layer width ∆x ∝ η2/54′1/5 which

satisfies γ ∝ 4′
η/∆x, i.e., the magnetic flux is destroyed across the resistive layer at a rate

proportional to η4′
.

These simple observations nicely illustrate the failure of the conventional local saturation

paradigm,1 and strongly support the argument that propagation of turbulence is a crucial,

fundamental problem in understanding confinement scalings for fusion devices in which
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growth and damping rate profiles vary rapidly in space. Focusing on the weak turbulence

regime, in which global gyrokinetic simulation results are well documented,15 we take β = 1

for the rest of this paper.

We can make further analytic progress by considering profiles of γ(x), α, and χ0 which

are constant in radius. Equation (1) is obviously a variant of the well-known Fisher-KPP

equation for logistic-limited epidemic propagation,25,26 with nonlinear diffusion when γ(x) >

0. It is well-known that a reaction-diffusion type equation including the Fisher-KPP equation

exhibits a ballistically propagating front solution. Both analytic and numerical solutions have

been presented in detail in Ref. 16. The front velocity is simply given by Ux =
√

γ2χ0/2α.

This solution indicates that the dynamics of I(x, t) developing from a localized source of

turbulence evolves in two steps. First, there is rapid growth to local saturation at I =

γ(x)/α. Second, the value I = γ(x)/α defines an effective value of the intensity dependent

fluctuation diffusion χ = χ0I = χ0γ/α. A classic Fisher-KPP front with velocity Ux =
√

γχ/2 is a consequence of the spatial coupling induced by a combination of local turbulence

growth (with growth rate γ) and the effective diffusion (χ = χ0γ/α). This front propagation

on a hybrid time scale is a good example of a meso-scale phenomenon, which would be lost

in a local or quasi-local model. It is crucial to note that the front of turbulence intensity

can propagate ballistically (i.e., xfront = Uxt), even in the absence of toroidicity-induced

coupling of neighboring poloidal harmonics. Therefore, the rapid propagation observed in

simulations does not imply the dominance of linear coupling of poloidal harmonics. Rather,

rapid propagation should be considered as a more general consequence of the nonlinear

dynamics. Since the scaling of Ux from our nonlinear theory (which increases with I and γ)

is drastically different from expectations from one based on linear toroidal coupling,12 our

gyrokinetic simulations with the R/LTi scan provide crucial information on the dominant

mechanism responsible for turbulence spreading. As shown in Figs. 1,3, and 4, since the

front propagation velocity changed significantly from Ux ' 2.1ρics/R, to Ux ' 2.6ρics/R,

to Ux ' 4.2ρics/R as we increased the core gradient from R/LTi = 6.1, to R/LTi = 6.9

to R/LTi = 9.0, our gyrokinetic simulation results [which approximately scale like Ux ∝
(R/LTi)

1.9] agree better with the scaling from a nonlinear diffusion model16 than with that

from the linear toroidal couping Ux ∝ ρics/R. These results are summarized in Fig. 6.

We also note that a numerical solution of Eq. (1) using the parameters in the simulations

(the case with R/LTi = 6.9 at the core) shows a spatio-temporal evolution of turbulence
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patches (Fig. 7) which is very similar to the simulation results shown in Fig. 1.

In the first significant numerical study addressing turbulence spreading which has been

performed in the context of a global mode couping analysis of toroidal drift waves,12 it was

observed that the linear toroidal coupling of different poloidal harmonics played a dominant

role in the convective propagation of fluctuations into a region with a zero level background

of fluctuations in most parameter regimes. It is worthwhile to note that Ref. 12 was pub-

lished before the important role of the self-generated zonal flows in regulating turbulence

in toroidal geometry was fully realized.13 In a similar fashion to the way mean E ×B flow

shear causes decorrelation of turbulence in the radial direction,28,29 random shearing by

zonal flows30,31 (which was not included in Ref. 12) would make linear toroidal coupling

much weaker. This is shown by the measured reduction in the radial correlation length of

the fluctuations32 as radially global toroidal eigenmodes are trimmed or destroyed by the

zonal flows in gyrokinetic simulations.13 Thus, we believe that the ballistic front propagation

observed in our gyrokinetic simulations should be considered as a more general consequence

of the nonlinear dynamics, rather than as one due to linear toroidal coupling. We note that

turbulence spreading has also been observed in the absence of toroidal coupling,33,34 and

with temperature profile evolution35. Analytic studies of turbulence spreading have recently

been extended to subcritical turbulence as well.36

IV. CONCLUSION

The sum of these studies suggests that turbulence spreading is a simple, generic problem,

and not one due exclusively to toroidal geometry. An important element of the rationale for

model building is to develop an analytic representation of turbulence spreading. Our results

indicate the key importance of the fluctuation intensity profile and gradient in determining

the spreading rate. This observation calls into question models which attempt to treat

spreading by averaging over a given region in an ad hoc manner.

The time-honored local saturation paradigm (i.e., γ/k2
⊥ = D) is clearly inadequate and

incomplete. A finite initial pulse of turbulence spreads on dynamically interesting time

scales, and more rapidly than rates predicted by considerations of transport alone. For ex-

ample, the predicted intensity velocity is the geometric mean of the local growth rate and

the turbulent diffusivity. Efforts at modeling based on the local saturation paradigm should
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be reconsidered. Indeed, a recent finding37 also indicates that flux-tube intuition based on

the ballooning formalism is of dubious utility in describing mesoscale dynamics involving

streamers. Since turbulence can tunnel into marginal or stable regions, fluctuation energy

originating at the strongly turbulent edge may spread into the marginal core relatively eas-

ily, thus producing an intermediate region of strong turbulence. This phenomenon blurs the

traditionally assumed distinction between the “core” and “edge” as some profiles from ex-

periments indicate38, and suggests that the boundary between the two is particularly obscure

in L-mode. It also identifies one element of the global profile readjustment which follows

the L→H transition,39,40 namely the quenching of turbulence in the core which originated at

the edge. Application of this model has helped elucidate the dynamical connection between

core and edge, and the appearance of a connection zone, driven by the “spillover” of energy

from the strongly turbulent edge into the quasi-marginal core.
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FIGURE CAPTIONS

FIG. 1: Spatio-temporal evolution of turbulence intensity from GTC simulation for R/LT i = 6.9

in core and 13.8 in edge.

FIG. 2: Spatio-temporal evolution of turbulence intensity from GTC simulation for R/LT i = 5.3

in core and 10.6 in edge.

FIG. 3: Spatio-temporal evolution of turbulence intensity from GTC simulation for R/LT i = 9.0

in core and 18.0 in edge.

FIG. 4: Spatio-temporal evolution of turbulence intensity from GTC simulation for R/LT i = 6.1

in core and 12.2 in edge.

FIG. 5: A cartoon illustrating that the integrated fluctuation intensity in a region of extent 24x

about a point x (i.e.
∫ x+4x
x−4x I(x′)dx′) can grow, even for negative γ(x), so long as χ(I)∂I/∂x|x+4x

x−4x

is sufficiently large. Alternatively, I can decrease, even for positive γ(x), should χ(I)∂I/∂x|x+4x
x−4x

be sufficiently negative.

FIG. 6: Dependence of the front propagation speed and the time averaged value (during the last 1/3

of simulation duration) of the fluctuation intensity at r/a = 0.4 on the ion temperature gradient.

FIG. 7: Spatio-temporal evolution of turbulence intensity from a numerical solution of Eq. (1)

using parameters used for GTC simulation in Fig. 1.
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